Pré-Publication, Document De Travail Année : 2024

SETS OF CROSS NUMBERS OF SEQUENCES OVER FINITE ABELIAN GROUPS

Aqsa Bashir
  • Fonction : Auteur
  • PersonId : 1375126

Résumé

Let $G$ be a finite abelian group with $\exp(G)$ the exponent of $G$. Then $\mathsf W(G)$ denotes the set of cross numbers of minimal zero-sum sequences over $G$ and $\mathsf w(G)$ denotes the set of all cross numbers of non-trivial zero-sum free sequences over $G$. It is clear that $\mathsf W(G)$ and $\mathsf w(G)$ are bounded subsets of $\frac{1}{\exp(G)}\mathbb{N}$ with maximum $ \mathsf K(G)$ and $\mathsf k(G)$, respectively (here $\mathsf{K}(G)$ and $\mathsf{k}(G)$ denote the large and the small cross number of $G$, respectively). We give results on the structure of $\mathsf W(G)$ and $\mathsf w(G)$. We first show that both sets contain long arithmetic progressions and that only close to the maximum there might be some gaps. Then, we provide groups for which $\mathsf W(G)$ and $\mathsf w(G)$ actually are arithmetic progressions, and argue that this is rather a rare phenomenon. Finally, we provide some results in case there are gaps.
Fichier principal
Vignette du fichier
sets-of-cross-numbers_revision.pdf (275.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04546837 , version 1 (15-04-2024)
hal-04546837 , version 2 (20-01-2025)

Identifiants

  • HAL Id : hal-04546837 , version 2

Citer

Aqsa Bashir, Wolfgang Schmid. SETS OF CROSS NUMBERS OF SEQUENCES OVER FINITE ABELIAN GROUPS. 2024. ⟨hal-04546837v2⟩
32 Consultations
30 Téléchargements

Partager

More