Al at the BnF: feedbacks

Jean-Philippe Moreux

Bibliothèque nationale de France DSR/DCP, service Coopération numérique et Gallica

Expert scientifique Gallica

ADOCH – 14 septembre 2021

Genealogy of the digital R&D at the BnF: focus on AI

Feedback on past and on-going projects:

- Working on print and manuscripts
- Working on images

Conclusions on AI acculturation in heritage institutions

From EU projects to local initiatives: continuity and changes

R&D genealogy

The deep learning revolution

R&D genealogy

Democratisation of AI

Projects

Working on print and manuscripts

NEWS

A Digital Investigator for Historical Newspapers

https://www.newseye.eu/

European project « NewsEye » (2018-2021):

• 3 national libraries (AU, FL, FR), 3 « digital humanity » teams, 4 CS labs

- « HTR as OCR » (re-ocerisation: 1% CER), articles separation (F1: 70%-85%)
- Semantic enrichment: NER (BERT-based approach, winner of International competition HIPE@CLEF 2020), stance detection, event detection, topic modeling
- Dynamic text mining, multilingual text mining

Newspapers collections as data

Outputs:

- Web platform for researchers
- Models and datasets
- Transkribus+
- Evaluation of OCR quality on NER...

Reconciling CS, DH and libraries agendas...

- Export of large image datasets from library repositories
- Article separation quality: too low
- Understandable quantitative analysis that can be justified & explained: too ambitious
- Sustainability of IT deliverables

Resources:

« The NewsEye pipeline for digitalizing large collections of historical newspapers », ICDAR 2021 workshop: https://www.newseye.eu/resources/videos

Handwritten text recognition

ANR project « Fiches de lecture Michel Foucault », 2017-2020

Search current document.	Jossy oge of ne 1000022 jeg [may here more treased united and Faultinda prost	yui runi)aut la mf	e e e	1.		[Consulter	d'autres fiche	es de la boîte : gak
→ 06 H 00 V → 00 L ↓	t som.		Décrire / ann	oter la fiche [b ation : 2.4 Référer	039_f0225]	Valider type choisi	[?]	
5 desanfants 16.2 9 16.2 7 - Faute des p 8 166 9 lorsqu'ils se s		angen pansi bille tor que cuble sites us (burrens, gb qu	Sélectionner Entrer un no Entrer le(s) ; Entrer des m Enrichir aver Associer und Erregistrer an et entité	un type de docur n de famille d'aut rénom(s) [?]: ots du titre [?]: : les données Bnl : URI BnF d'oeuvi	nent [?]: eur [?]: Système de Rech. app F? [?]	ohysio) rochée ® Rech.	exacte [2]	Chercher un algement sur databrf
10 les enfants d 11 + grave. 12 167 13 - "L'on ne do	ocnent leurs blessures, qui demenrent		2 résultats (a auteur	vec limite requête	e = 500)	titre	K date	edition
14 enfants, car,l 15 le ravater au 16 leur inspire d 17 suvnt le men 18 gdts, c est qu Region: 14 4 2 /	ans compter que c est les aviir et trang des malheureux, et qu on es sentimnents bas, ainpants, songe et pa. des vices encore+ t'il est très ivident quecela est 2 M (+ -) = B / X, X U &) = C	2	http://data.bnf /ark:/12148 /cb12013474.	fr Françoi # Vincen	http://data.bnf.f /ark:/12148 /cb37275701m	Nouveau système de physiologie Vegerare et de botanique : fondé sur les méthodes d'observation, aui ont été	[19??]	http://data.br /ark:/12148 /cb3727570

- No computer scientist in the loop!
- Transkribus model: manual transcription of 600 reading notes, CER: 8 %
- Human annotation of NERs + NER linking with data.bnf.fr

Handwritten text recognition

Outputs:

• Web platform and corpora for researchers: https://eman-archives.org/Foucault-fiches/

- HTR Model for MF scripting
- Acculturation of the team to HTR

Difficulties:

- Only 10k notes transcribed on 20k
- BnF's workflow for OCR ingestion is not agile enough to accommodate small corpora
- Gallica can't handle named entities

L'es outils L'avantage de travailler avec des chercheurs

Layout recognition, document analysis

CollEx project « DISCO »: La Grande Encyclopédie (Berthelot) (2019-2021) INRIA-BnF-INHA project DataCatalogues (2021-2022)

- Layout Analysis for dictionnary and sales catalogs (fine arts, coins)
- CRF (conditional random fields) with GROBID tool (INRIA)
- TEI output

Layout recognition, document analysis

ANR project CollabScore (IREMUS, IRISA, CNAM, BnF, Fondation Royaumont)

Transcription of printed music scores:

- OMR (Optical Music Recognition)
- automatic quality assurance tools
- automatic alignment of media
- crowdsourcing of the transcriptions
- dissemination and mediation with IIIF

BnF project REMDEM: Repertoire of Musical Writings

- automatic writer
 identification on
 handwritten musical
 scores
- IIIF dissemination

Segmentation of heritage maps

JADIS project (EPFL master project)

EPFL

- Paris Maps segmentation, georeferencing and geocoding of street names
- Web app: https://bnf-jadis.github.io/

Projects

Working on images

{BnF

What illustrations?

- Diverses document genres, artistic/print technics
- All time periods and fields of knowledge
- Heterogeneous metadata

Segmentation of illustrations

DocExtrator (LIGM, ENPC) dhSegment (EPFL/DHLab)

• Mandragore and Gallica datasets

BnF PoC « GallicaPix » (2017-)

Hybrid retrieval of iconographic content. Theme: WW1, 220k illustrations

- Deep learning for classification and object detection
- In-house trained models and out-of-the box AI services
- IIIF end-to-end, BaseX + XQuery

La Zaouia de Sidi-Ombareck

http://gallicapix.bnf.fr

IIIF Gallica document enriched with GallicaPix annotations opened in Mirador

Outputs:

- Out-of-the-box models work quite well on 19th and 20th c. collections
- Demonstrator for CBIR, aiming internal (curation, digital mediation, iconographic retrieval) and external users (general audience, DH)
- Pilot project for AI@BnF
- Basis for the Gallica Images project public contract (2021)

Difficulties:

- Accurate indexing on an encyclopedic visual collection is out of reach
- Publishing a public contract on the AI domain is a lot of work (1 year)
- Launching an AI project at scale is difficult:
 - budget estimate (100% error)
 - scarcity of adequate service providers (GLAM sector + AI expertise)
 - how to specify quality evaluation, quality commitment
 - machine learning on multiple collections/time periods... is hard w
 - integration into legacy IT systems can be challenging

INRIA (Institut national de recherche en sciences et technologies du numérique) and BnF R&D project (2019-2020)

- Mandragore database (illuminated manuscripts indexed/taxonomy)
- Zoology sub-corpora: 24k images, 42k annotations
- 397 species, no zoning within images
- unbalanced classes, large intraclass variability

Innia

Difficulties: image size

Difficulties: unbalanced classes

Phylogenetic grouping of species: 397 classes -> 30 classes

Figure 7: Original annotations distribution

Class	Instance					
Bird	8467					
Horse	4801					
Lion	3117					
Shark	2					
Slug	1					
Poleca	.t 1					
Table 2: The						
largest and						
smallest classes						

Figure 9: Regrouped annotations distribution

Weak supervision: Xception model trained on Imagenet, transfert learning of a multilabel classifier. Activation map shows where the object is.

- The Mandragore dataset does not have a random distribution
- Books have themes, and their appearance affects the classification
- Idea: detect first the objects to classify

Strong supervision:

- Data augmentation, manual annotation: 100 occurrences/class; 1,8k images; 8k boxes
- Faster R-CNN (TensorFlow) architect
- Pretrained model (iNaturalist base, transfert learning)
- Candidates region detection, candidates classification, post-processing of boxes

- patch size of the model: 1024 pixels
- training of several models according to a sliding window (total image, patch of 400-600-800-1200-1600 pixels)

Small patches help detect small objects

Model	iNat_V3_0	iNat_V2_1	iNat_V2_2	iNat_V2_3	iNat_V2_4	iNat_V2_5	iNat_V2_6	iNat_V2_7
Image size	Full	400	600	800	1000	1200	1400	1600
aegodontia	1.000	1.000	1.000	1.000	1.000	0.996	0.951	0.964
anoure	0.979	1.000	1.000	0.998	0.999	1.000	0.937	0.959
bear	0.977	1.000	0.988	1.000	0.978	0.981	0.948	0.955
bird	0.918	0.998	0.995	0.993	0.995	0.993	0.974	0.970
bovine	0.976	0.980	0.983	0.997	0.989	0.986	0.964	0.888
butterfly	1.000	1.000	1.000	1.000	1.000	1.000	0.988	0.985
camelini	1.000	0.986	0.983	0.977	0.991	0.982	0.961	0.942
canid	1.000	1.000	0.999	0.999	0.999	1.000	0.940	0.965
caprine	0.882	0.991	0.991	0.979	0.948	0.950	0.930	0.901
cervid	1.000	0.988	0.990	0.982	0.977	0.981	0.974	0.936
cetacean	0.986	0.993	1.000	0.992	0.994	0.989	0.980	0.991
crocodile	1.000	1.000	1.000	1.000	1.000	1.000	0.989	0.996
crustacean	1.000	1.000	1.000	1.000	0.995	1.000	1.000	0.981
dog	0.926	0.929	0.935	0.920	0.924	0.918	0.878	0.870
elephant	1.000	0.989	1.000	0.998	1.000	0.974	0.890	0.851
equid	0.977	0.986	0.981	0.987	0.975	0.952	0.904	0.910
feline	1.000	1.000	1.000	0.999	0.988	0.986	0.903	0.872
fish	0.951	0.994	0.995	0.993	0.993	0.992	0.959	0.975
insect	0.566	1.000	1.000	1.000	1.000	1.000	0.989	0.998
lion 🔶	0.968	0.977	0.984	0.992	0.985	0.985	0.939	0.937
lizard	1.000	1.000	0.999	1.000	0.999	0.989	0.950	0.972
mollusc	0.981	1.000	1.000	1.000	0.999	0.999	0.977	0.985
monkey	1.000	1.000	1.000	0.999	0.992	0.997	0.950	0.978
mustelid	0.976	0.950	0.948	0.981	0.952	0.960	0.970	0.961
porcine	0.985	0.984	0.982	0.966	0.939	0.965	0.916	0.921
rabbit	0.965	0.980	0.967	0.991	0.973	0.955	0.944	0.917
rodent	0.984	0.989	1.000	0.977	0.971	0.946	0.877	0.918
scorpio	1.000	1.000	1.000	0.999	0.999	0.999	0.996	1.000
serpente	0.976	0.978	0.958	0.980	0.974	0.940	0.834	0.899
tortoise	1.000	1.000	1.000	1.000	0.992	0.999	0.988	0.990
mΔP	0.966	0 990	0.989	0 990	0.984	0.980	0 947	0.946

Without transfer learning on iNaturalist: bad results

Model	iNat_C_2 i	Nat_G_0 if	Nat_H_2 iN	lat_F_7 iN	lat_1_2 iN	at_J_2 iN	at_K_2 iN	at_L_2
image size	Full	400	600	800	1000	1200	1400	1600
aegodontia	0.084	0.078	0.157	0.181	0.259	0.279	0.200	0.276
anoure	0.000	0.049	0.087	0.076	0.130	0.114	0.105	0.201
bear	0.107	0.053	0.169	0.196	0.185	0.252	0.141	0.204
bird	0.152	0.392	0.377	0.460	0.450	0.430	0.416	0.430
bovine	0.013	0.019	0.041	0.068	0.049	0.098	0.154	0.059
butterfly	0.078	0.401	0.318	0.368	0.326	0.411	0.390	0.438
camelini	0.149	0.128	0.133	0.246	0.160	0.197	0.171	0.243
canid	0.082	0.097	0.108	0.115	0.168	0.100	0.187	0.121
caprine	0.006	0.041	0.051	0.059	0.085	0.068	0.074	0.091
cervid	0.131	0.132	0.234	0.244	0.323	0.331	0.333	0.320
cetacean	0.078	0.047	0.038	0.067	0.121	0.099	0.111	0.090
crocodile	0.279	0.154	0.196	0.301	0.303	0.233	0.253	0.346
crustacean	0.346	0.226	0.262	0.355	0.276	0.344	0.397	0.348
dog	0.108	0.155	0.194	0.184	0.288	0.212	0.214	0.235
elephant	0.100	0.046	0.100	0.146	0.147	0.105	0.075	0.049
equid	0.093	0.311	0.283	0.321	0.255	0.284	0.279	0.273
feline	0.067	0.043	0.059	0.113	0.095	0.105	0.119	0.121
fish	0.143	0.325	0.305	0.380	0.386	0.389	0.287	0.372
insect	0.002	0.084	0.209	0.311	0.305	0.139	0.111	0.165
lion	0.168	0.105	0.184	0.197	0.200	0.253	0.207	0.259
lizard	0.279	0.184	0.236	0.296	0.283	0.270	0.421	0.299
mollusc	0.055	0.106	0.257	0.293	0.252	0.242	0.249	0.278
monkey	0.029	0.079	0.103	0.134	0.152	0.295	0.141	0.157
mustelid	0.041	0.039	0.044	0.085	0.102	0.121	0.123	0.106
porcine	0.148	0.104	0.163	0.330	0.277	0.243	0.297	0.254
rabbit	0.020	0.280	0.181	0.310	0.287	0.343	0.398	0.332
rodent	0.064	0.021	0.050	0.041	0.061	0.054	0.080	0.099
scorpio	0.313	0.210	0.291	0.420	0.327	0.413	0.411	0.483
serpente	0.023	0.052	0.043	0.148	0.033	0.067	0.058	0.145
tortoise	0.421	0.173	0.311	0.341	0.506	0.470	0.461	0.527
mAP	0.119	0.138	0.173	0.226	0.226	0.232	0.229	0.244

Table 7: Average Precisions (AP@0.5) for each class and models trained from scratch

Table 8: Average Precisions (AP@0.5) for each class and model pretrained on iNaturalist

Outputs:

- Good classification results
- Visually heterogeneous collections can be processed

Difficulties:

- Going from a richly annotated database like Mandragore to an operational training dataset for AI can be laborious
- Drawing boxes for a 30 classes classifier on a heritage corpora is very time consuming

Visual similarity: Snoop engine

- INRIA and INA (Institut national de l'audiovisuel) research labs
- Content based image search for video/image: Snoop engine
- 2003-

INA use case

Logo search in TV news

INRIA use case

Snoop is the Pl@ntnet app's visual engine

Ínría

Citizen Science platform in a nutshell

Machine Learning

Nature watchers

50 million images 16 Tb of data 10 servers 20 users of the identification API

4 permanent researchers
3 engineers
3 PhD students
2 post-docs
4 research organisms: CIRAD, Inria, INRA, IRD

12 million downloads

40-100K users per day

30M plant observations

11 languages

22 checklists

in 2018

18K plant species

GallicaSNOOP

Proof of concept on the Gallica Images (1M images) collection and sample of the newspapers collection

- Instances search:
 - o snop Results input, =, photo, agency picture

file:///home/installer/DataSets/Images/Bnf/Matchs/imagesResized/Gallica/btv1b53110529j/f1_div_3.jpg

Snoop Results

GallicaSNOOP

Iterative search (human in the loop)

- 1. Start image
- 2. Iterative selection of documents (+/-)
- 3. New results list (linear SVM) proposed to the user

GallicaSNOOP

Outputs:

- Excellent feedback from users
- Can be tuned to corpora and use cases

Difficulties:

- Visual similarity engines quality is difficult to evaluate
- Need a lot of engineering

How to accommodate AI in heritage institutions?

Difficulties:

Collaboration

• Computer scientist, digital humanists and heritage institution have different agendas:

- CS: search for a breakthrough or an improvement of the state of the art
- DH: need digital datasets and digital tools (to start working)
- LAM: must implement robust long-term services
- Service providers with expertise on AI and heritage sector are still rare
- Internal collaboration processes must be designed (AI projects are different from Web or database oriented projects)
- AI R&D has some particularities, but it can be managed as any other digital R&D and benefit from past and on-going projects

Implementation

- Implementation of CS results in IT institution is always difficult
- Sustainability of CS deliverables is a challenge
- Valorisation of DH research work on the collections (transcription, annotation, enrichment) is tricky. This should be planned at the project design stage
- Library IT must now deal with various flavor of digital content (old OCR, new OCR, corrected OCR, manual OLR, automatic OLR...)
- Library IT is not ready to ingest exotic data like semantic enrichments, object detection in images, etc. Life cycle of this data must be handle too
- Advanced AI approaches can be difficult for a library to **industrialize**. Some of them don't scale up well. High performance infrastructures are needed for reprocessing our 20 years old digital collections

Benefits:

- Transdisciplinary AI projects generally work well (but CS, DH and institutions must work in agile mode)
- Machine learning needs data and expertise on data: librarians are central!
- These projects help institutions to get a sense of that is possible
- They help to acculturate to new AI approaches
- They help to better understand and meet the needs of researchers
- The IIIF protocol has a + impact on R&D (access, toolbox, dissemination)

Outputs:

- A roadmap for AI at the BnF, including a program of 6 projects (2022-2025)
- Support for AI projects at the BnF Datalab (opening October 18th)
- International cooperation: EU projects, ai4lam.org initiative
- Stronger national cooperation with AI labs, AI support centers
- New services: internal OCR pipeline (easy to adapt for HTR), GallicaPix, Gallica Images

Thanks!

Jean-Philippe Moreux

Bibliothèque nationale de France DSR/DCP, service Coopération numérique et Gallica

Expert scientifique Gallica

Recherche itérative

- Sélection par l'utilisateur des documents +/-
- Plusieurs critères de sélection par le moteur :
 - Moyenne des descripteurs des documents positifs
 - Apprentissage d'un classifieur binaire (SVM linéaire)
 - Prédiction uniquement sur les K plus proches voisins des éléments sélectionnés
- o Renvoie les
 - plus positifs
 - plus ambigus
 - plus négatifs

